

Polish Oil & Gas Company

Polish Oil & Gas Institute

WELCOME TO

Praxis Interactive Technology Workshop 9th Global Edition

MEOR Spells MORE OIL

A Systematic Approach to Microbial Enhanced Waterflooding for Smaller Scale Projects.

> Presented by RAM Biochemicals, Inc. & The Polish Oil and Gas Institute

- Plawowice Project Cooperative Partners
 - Design, Development, Implementation & Monitoring
 - → Results
 - → Summary
- MEOR Basic Approaches
- Maturity of Various EOR / MEOR Processes
- EOR / MEOR Cost per Incremental Barrel
- Conclusion

INiG / POGI – Polish Oil & Gas Institute

Laboratory Evaluations Pre- and Post-treatment Microbial System Scale-up / Processing Collaborated on Project Design / Development / Implementation Project Monitoring

POGC – Polish Oil and Gas Company

Oil Producer / Geophysical & Geochemical Data Microbial System and Nutrient Injections Monthly Production Data and General Observations

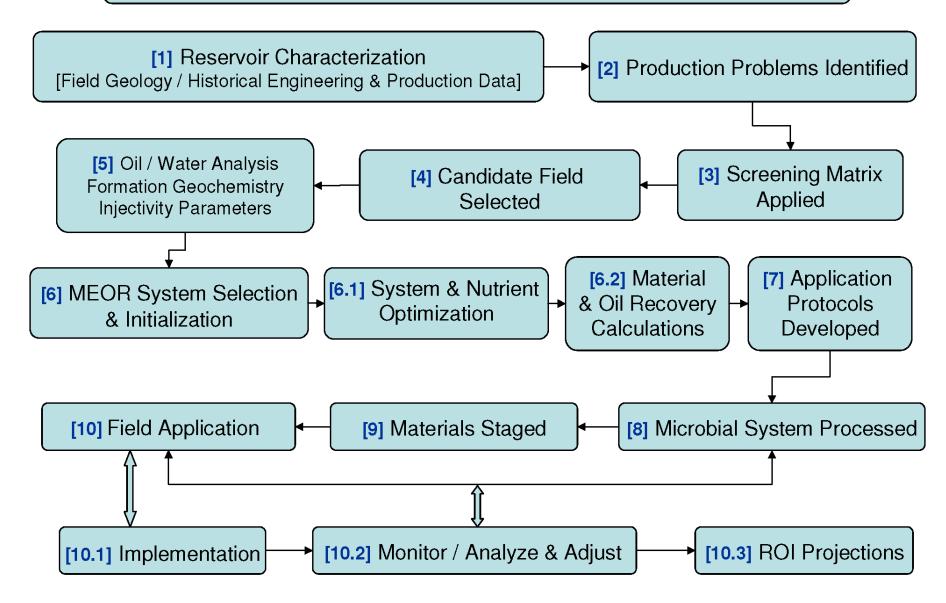
BTEC / NC State University Department of Microbiology

Produced Microbial System Inoculum from RAM Seed Stock

RAM – RAM Biochemicals, Inc.

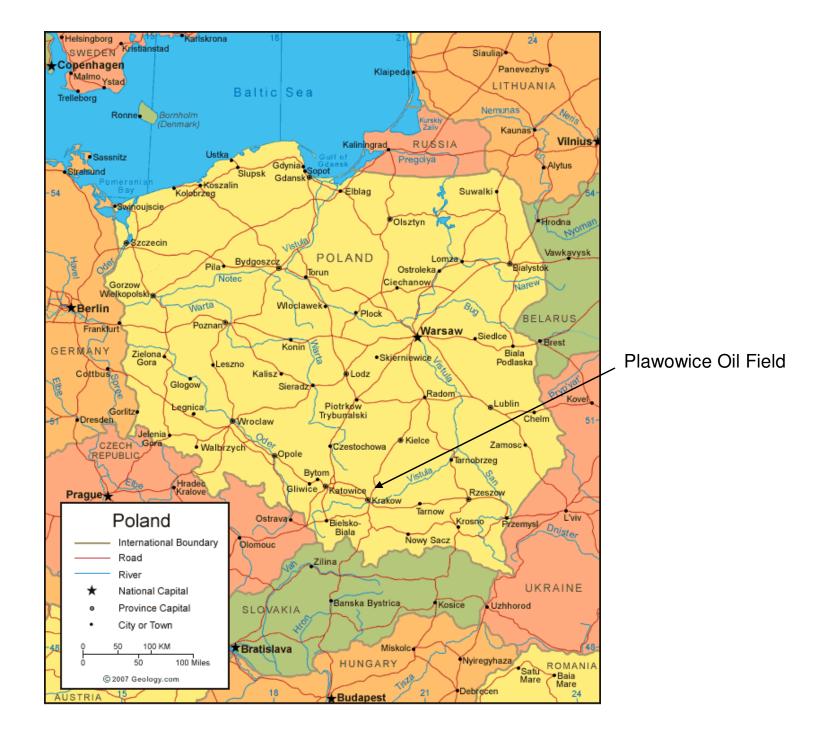
Provided Microbial Materials / Batch Records & Protocols for All Laboratory & Field Work Collaborated on Plawowice Project Design / Development / Implementation & Monitoring Project Coordination

Producer's life cycle


Life is good

again!!!

Thanks to Dr. Steven Bryant, U. of TX at Austin. Graphics adapted from his SPE Presentation: A Sober Look at MEOR http://www.rambiochemicals.com/docs/a_sober_look.pdf

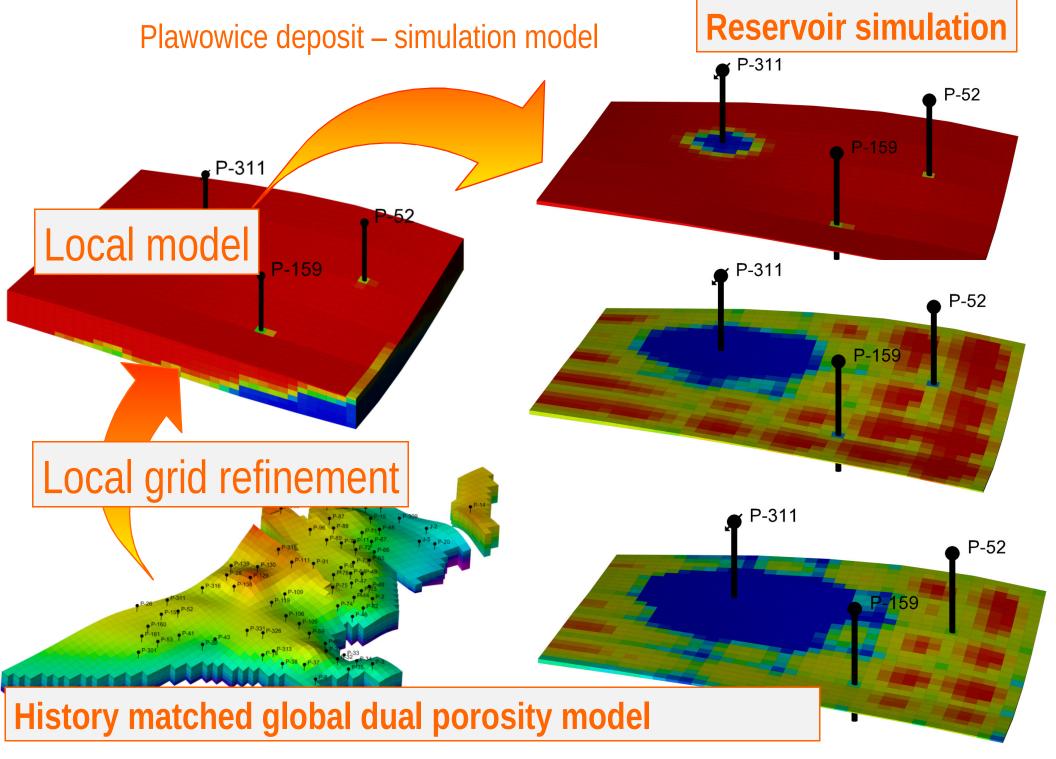

- Plawowice Project Cooperative Partners
 - Design, Development, Implementation & Monitoring
 - → Results
 - Conclusion
- MEOR Basic Approaches
- Maturity of Various EOR / MEOR Processes
- EOR / MEOR Cost per Incremental Barrel
- Summary

Development of Microbial Enhanced Oil Recovery Solutions To Address Oil Production Problems in Mature Fields

Systematic Approach Applied to RAM/POGI Plawowice MEOR Project

Plawowice Oil Field Location

Pławowice Injector Producer Systems



Paraffinic oil; API 38°; 836 kg / m3 Produced brine ranges between 3% and 6% TDS

> First drilled in 1954, total oil production to date from the Plawowice oil field is about 602,000 metric tones.

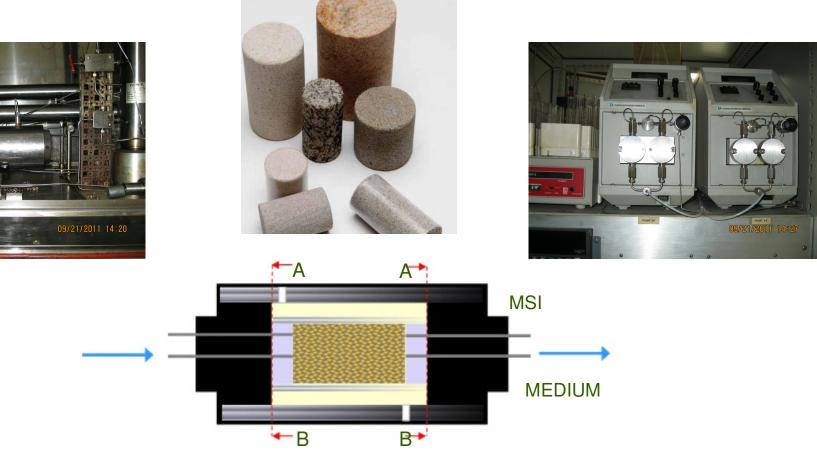
> > The Polish Oil and Gas Company began water flooding in 1986 by injected produced water into the production zone through two injection wells. Four producing wells were observed to be impacted by connectivity to the injectors.

Plawowice oil field map: http://www.rambiochemicals.com/docs/plawowice_map.jpg

Aut. Piotr Letkowski Department of Reservoir and Underground Gas Storage Simulation

Injection well PI-23 was shut-in in November 2011 due to mechanical problems. This removed the PI-23 / 41 & 43 system from the MEOR project.

Well Name	Pławowice 41	Pławowice 43	Pławowice 52	Pławowice 159
Symbol	Pł-41	Pł-43	Pł-52	Pł-159
temperature ^e C producing zone	23	23	24	24
reservoir pressure [Mpa]	0,13	0,13	0,1	0,6
oil production [tonns/day]	4,4	0,6	2,3	1,8
water production [tonns/day]	0,3	0,4	0,05	0,2
formation thickness [m]	9	3,5	8,5	6
perforations [m]	11	5,5	10	7

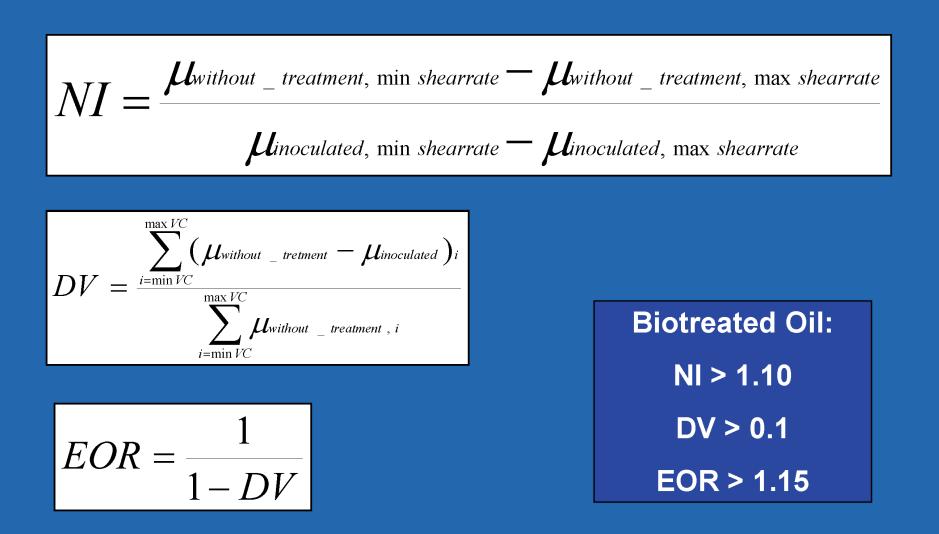

Production data from PI-41 is shown as a control (treated vs. untreated)

Core Study / Recovery Factor [RF] Determination

Core study apparatus

In 2011, INiG's oil engineering laboratory conducted core studies to determine the recovery factors [RF] for the microbial systems proposed by RAM Biochemicals

Laboratory core testing of Microbial System effectiveness


					Waterflooding			
Core	Permeability [mD]	Effective permeability S(or) [mD]	Pore volume [cm3]	Oil volume [cm3]	Oil displaced [cm3]	Oil Remaining [cm3]	RF _{wf} [%]	
1- Kontrola	267	267 4,1		3,0	1,0	2,0	33,3	
2	295	1,82	4,30	2,8	1,1	1,7	39,3	
3	424	5,64	4,15	2,6	1,1	1,5	42,3	
4	344	5,4	4,17	2,6	1,2	1,4	46,2	
5	335	4,3	4,21	2,2	1,3	0,9	59,1	
14	81	0,73	6,54	3,8	0,9	2,9	23,7	
15	97	0,85	6,52	4,3	0,9	3,4	20,9	

$E_{\underline{m}wf} = RF_{mwf} - RF_{wf}$	Core	RF _{wf} [%]	Injected MS [PV]	Additional MS Injected		Total time	RF _{mwf} [%]	E _{mwf} [%]
			Pore volume injected	Second injection [days]	Third injection [days]	Total incubation time [days]		
6,8%	1- Kontrola	33,3	Х	Х	Х	3	33,3	0,0
	2	39,3	0,5	1	2	3	55,4	16,1
	3	42,3	0,5	1	3	3	53,8	11,5
	4	46,2	0,5	Х	Х	10	50,0	3,8
	5	59,1	0,5	1	7	10	61,4	2,3
	14	23,7	0,5	Х	Х	10	27,6	3,9
	15	20,9	0,5	1	7	10	24,4	3,5

SELECTION METHODOLOGY

SPE International

Biotreatability Analysis

Mathematical terms and expressions are described in SPE 53715 and SPE 69652

Operational Plan - Pławowice MEOR

	POGI / POGC / RAM MICROBIAL ENHANCED WATERFLOOD		ı ı		SEP	TEMBER 2011	1	1	
	PLAWOWICE OIL FIELD	Fri	Sat	Sun	Mon	Tues	Wed	Thur	Fri
		16th	17th	18th	19th	20th	21st	22nd	23rd
	REACTOR EFFICIENCY STUDY			rk and batch records. perational time-line as					
	STEP 1 – MSI FERMENTATION			ssary.	Step 1				
1	1 Prepare 1,560 L growth medium				a1				
a	2 Heat to 70C, 30 min hold, cool to 30C, incubate 4 hrs				a2				
ł	Heat to 100C, hold for 1 hr, cool to 30C, sterilize addition port and pellet bags				b				
¢	Take aseptic reactor sample for pH & plating. Inoculate w/pellets and NTU read @15 minutes				с				
¢	Fermentation (16 hrs @30°C)				d				
•	Drum out / Transport to PL-1 field					e			
	STEP 2 - MS PREPARATION					5	Step 2		
a	1 Prepare15,400 L H2O + additives per batch protocols					a1			
8	2 Dechlorinate with 1,850 gm anh Na2SO3, Test for chlorine					a2			
1	3 Add 760 Kg nutrient + additives per protocols					a3			
ł	,					b			
•	; Fermentation (16 hrs @ 26-30° C)						c		
	STEP 3 – MSN PREP & MS INJECTION							Step 3	
	Prepare MSN per protocols							а	
ł	Mix MS + additives with oil field brine per protocols to achieve 4 wt %							b	
¢	Inject all MS from 20 M^3 tank rapidly							С	
	STEP 4 – MSN INJECTIONS								Step 4
i	Begin periodic MN injection @ 4% mol oil field brine								a
ł	Continue periodic MN injections per project protocols					PERIODIC MSN INJECT	ONS PER PROJECT PROTO	COLS (18 MONTHS)	b
	MONITOR / ADJUST			MONITOR	8 MONTHS / ADJUST MS	SN REGIMEN AS NEEDED) / EXTEND DURATION TO 24	 MONTHS & EXPAND PE	
MS	= MICROBIAL SYSTEM I = MICROBIAL SYSTEM INOCULUM N = MICROBIAL SYSTEM NUTRIENT								
							15		

Microbial System Inoculum [MSI] - Phase I Scale-up

MEOR materials prepared and optimized in BTEC's laboratory

MEOR Inoculum Preparation

Six 5 ml vials each contain 1 ml lyophilied microbes

Three 250 ml bottles contain high CFU microbial broth **BTEC 30 liter reactor**

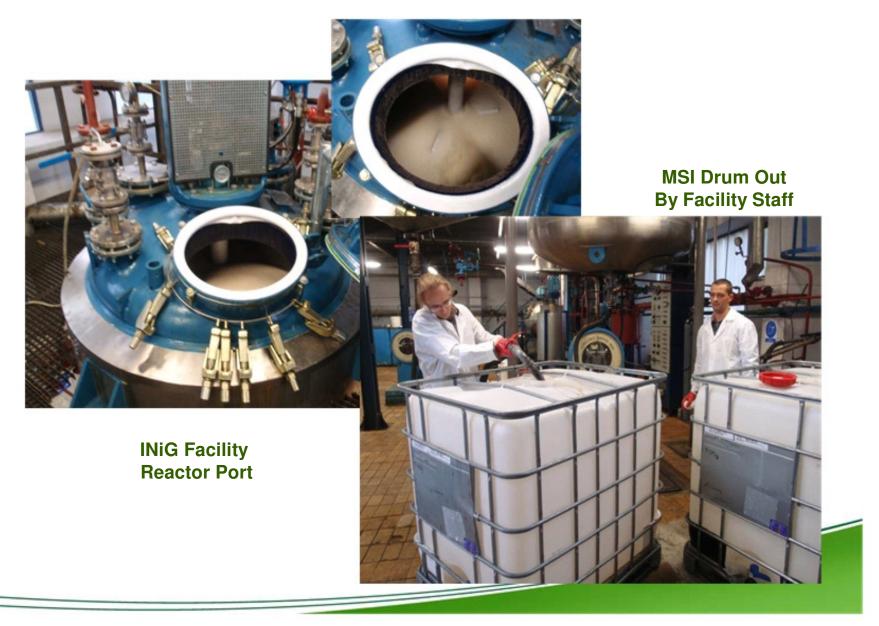
Rick Lawless BTEC Bioprocess Services

Frozen MSI concentrate pellet bag ≈ 6 kg

8 bags / 50 kilograms shipped to Poland for Phase II Scale-up

16

Phase II Scale-up at IniG / POGI Bio-preparation of 1,500 liters (1.5 m3)



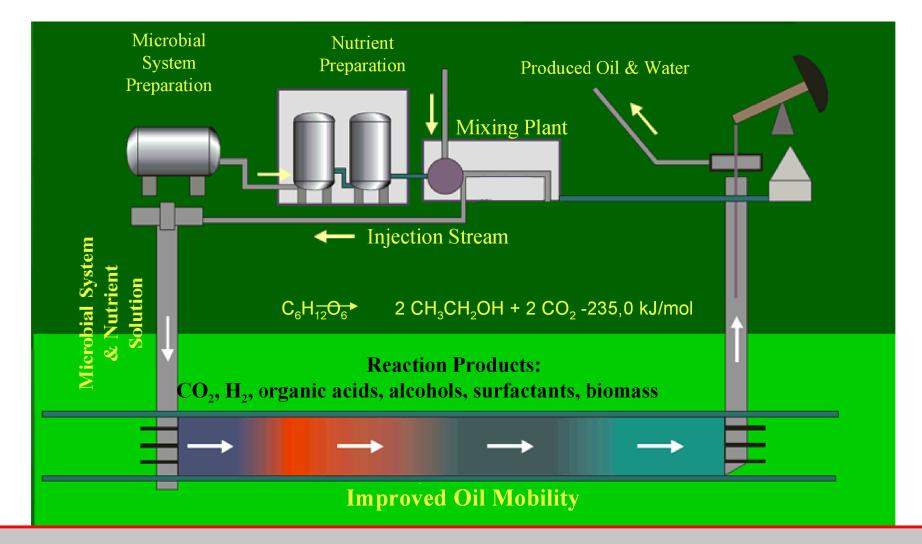
25

Phase II – Drum Out After 24 hrs 1,500 liters (1.5 m³)

Phase II Shipment to Plawowice Oil Field

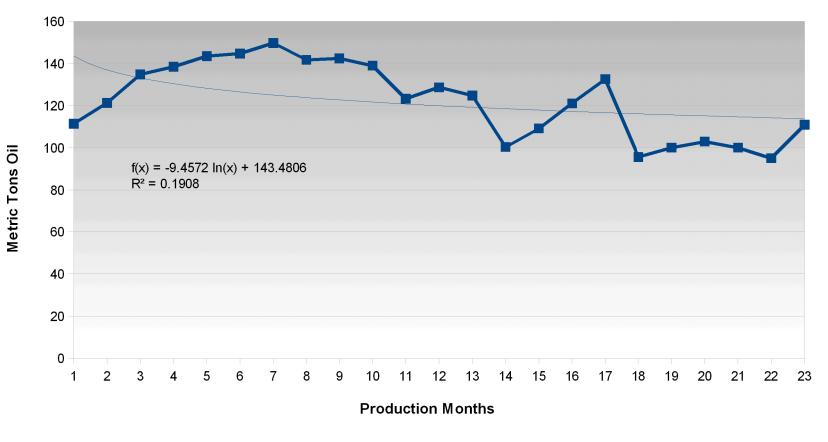
Loading 1,500 liters MSI at INiG Facility

MSI Delivery / Plawowice Oil Field



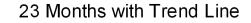
Phase III – Microbial System [MS] Preparation at Plawowice Oil Field

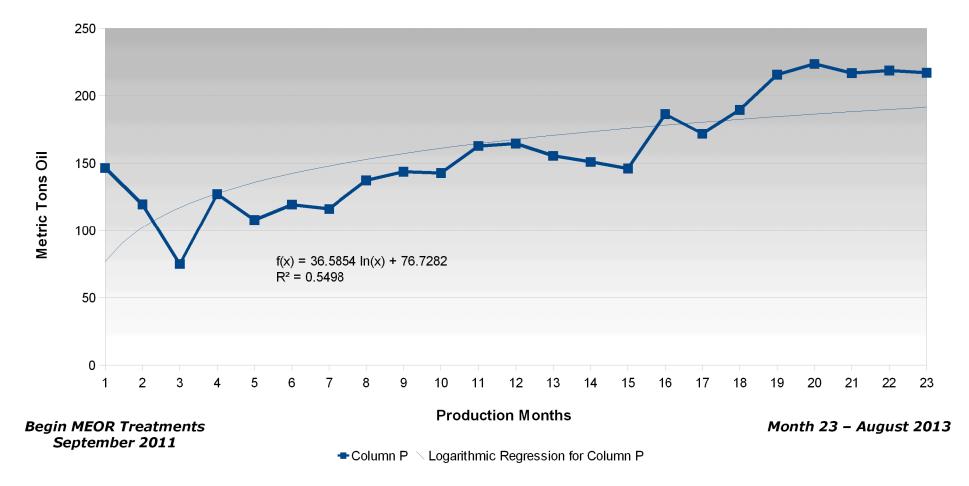
Microbial Enhanced Waterflood Process

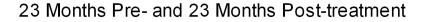


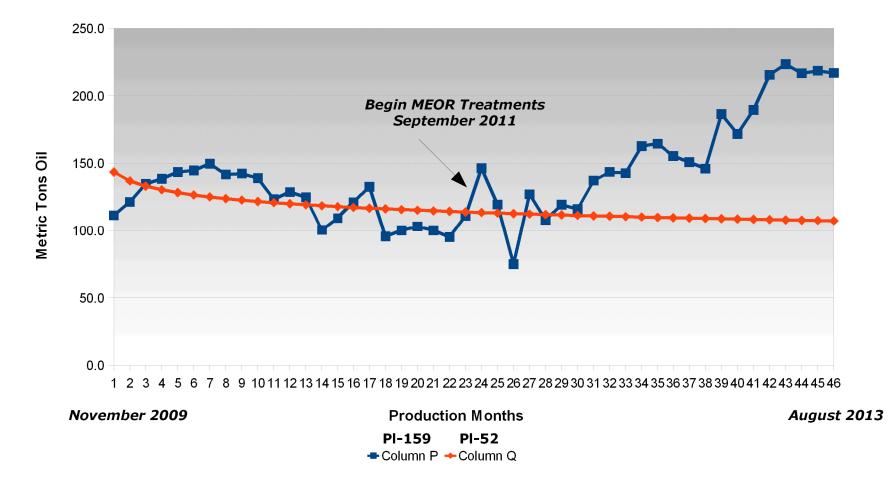
Treatment process involves a specially selected Microbial System (MS) injection into the oil bearing formation, followed by regular / periodic nutrient injections.
The Pławowice project used augmented beet molasses to sustain MS growth *in situ*.
Other inexpensive nutrients can be used depending on the MS bacteria composition.

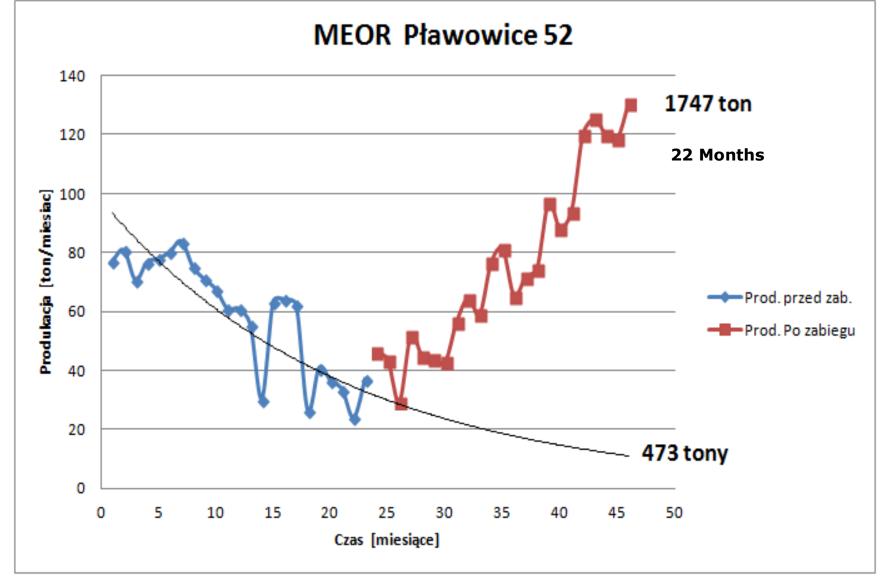
- Plawowice Project Cooperative Partners
 - Design, Development, Implementation & Monitoring
 - Results
 - → Conclusion
- MEOR Basic Approaches
- Maturity of Various EOR / MEOR Processes
- EOR / MEOR Cost per Incremental Barrel
- Summary

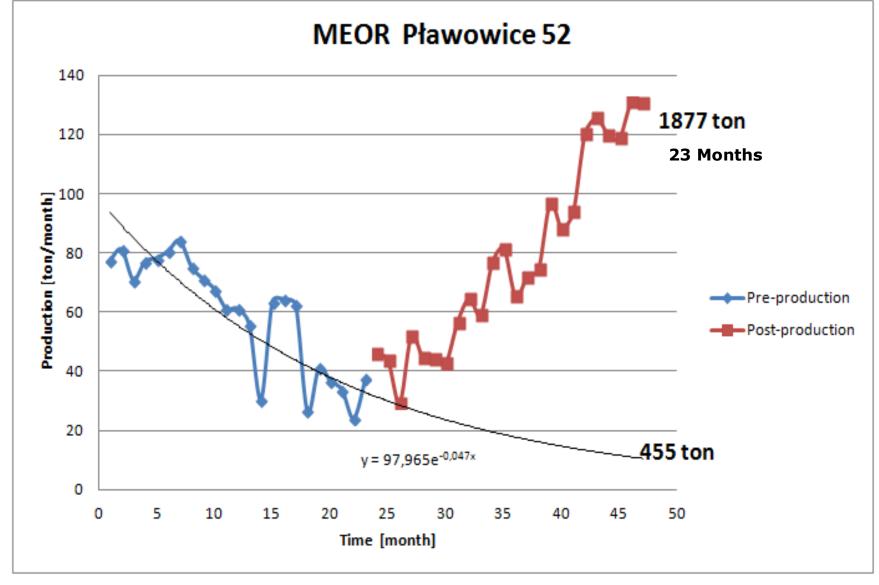

PI-52 & PI-159 Combined Pre-treatment Prodution


23 Months with Trend Line

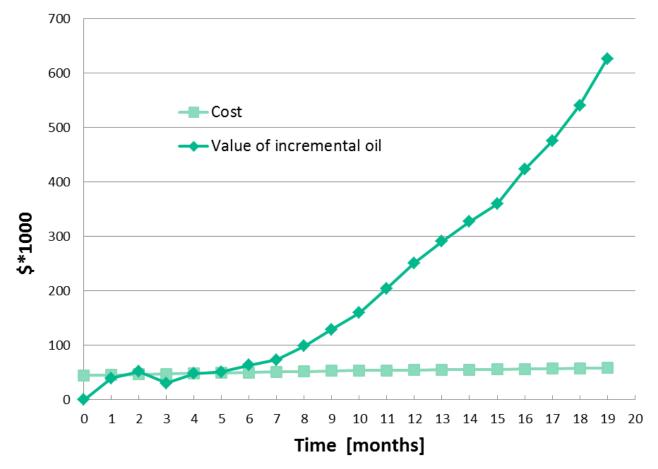

-Column P \sec Logarithmic Regression for Column P


PI-52 & PI-159 Combined Post-treatment Production

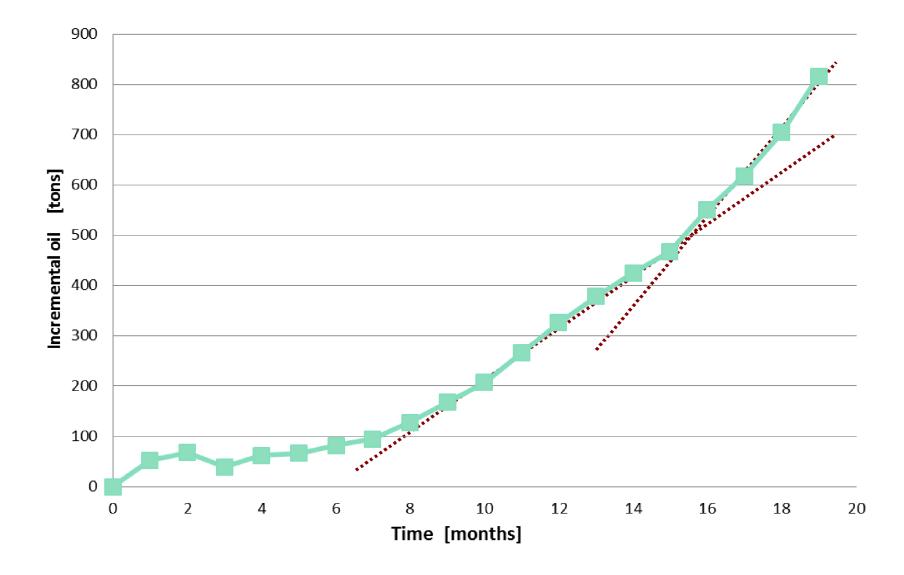

PI-52 & PI-159 Combined Production


PI-52 Producer

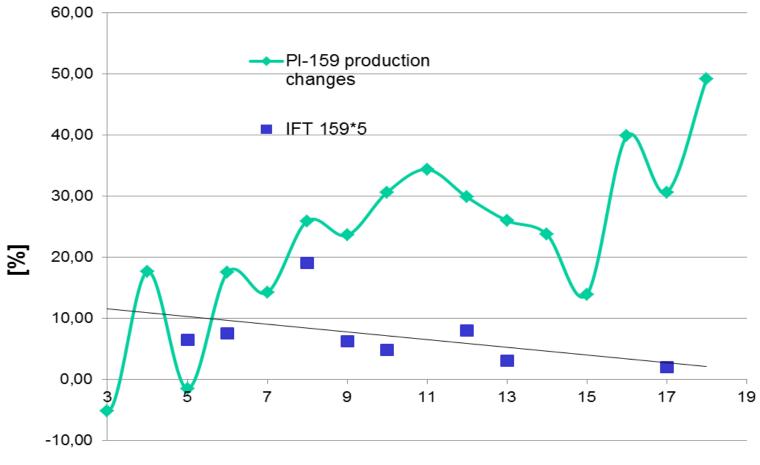
Pre-treatment 23 Months / Post-treatment 22 Months


PI-52 Producer

Pre-treatment 23 Months / Post-treatment 23 Months


PI-52 Producer – 23 Months Pre- and Post-treatment Production

Limited Ecomomic Analyses of Plawowice MEOR <u>19 Months</u>



Nutrient cost per incremental barrel < \$2.50 US Total MEOR cost per incremental barrel < \$11.00 US Projected MEOR per barrel costs at 32 months < \$6.00 US

Pł-52 and Pł-159 Combined Incremental Oil Production Trend Lines at 19 Months

IFT and production of PI-159 well comparison

Time [months]

- Plawowice Project Cooperative Partners
 - Design, Development, Implementation & Monitoring
 - → Results
 - Summary
- MEOR Basic Approaches
- Maturity of Various EOR / MEOR Processes
- EOR / MEOR Cost per Incremental Barrel
- Summary

Pławowice - Summary

- Significant production increases from both project wells > 1,400 metric tons (~ 10,500 barrels) in 23 months
- MEOR production cost at 23 months < \$8.00 /bbl incremental oil
- Per barrel production cost decreases over time provided increases are sustained
- Systematic approach to MEOR project development proved cost-effective at small scale (1-injector / 2-producers)
- Project used existing infrastructure, no specialized field equipment required
- Easily expanded to other injector / producer systems
- Improved injectivity reported at the PI-311 injector
- No formation damage or environmental problems observed

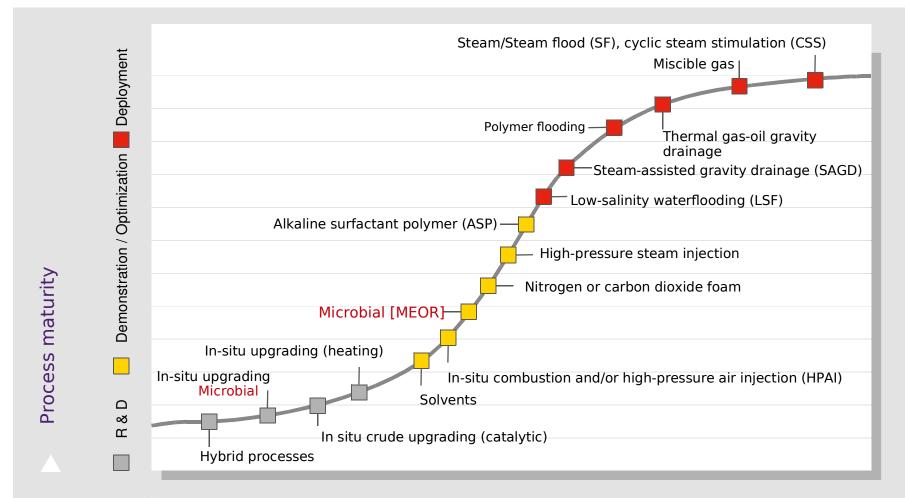
Based on these results, the Polish Oil & Gas Institute:

- Recommends project continuation through May 2014, and expansion in 2014 to include other connected injector / producer systems.
- Recommends POGC screen other mature oil fields for compatibility with this Microbial Enhanced Waterflooding Technology.

- Plawowice Project Cooperative Partners
 - Design, Development, Implementation & Monitoring
 - → Results
 - → Summary
- MEOR Basic Approaches
- Maturity of Various EOR / MEOR Processes
- EOR / MEOR Cost per Incremental Barrel
- Summary

Basic MEOR Approaches

MEOR technology is implemented by the following **basic approaches with variations**:

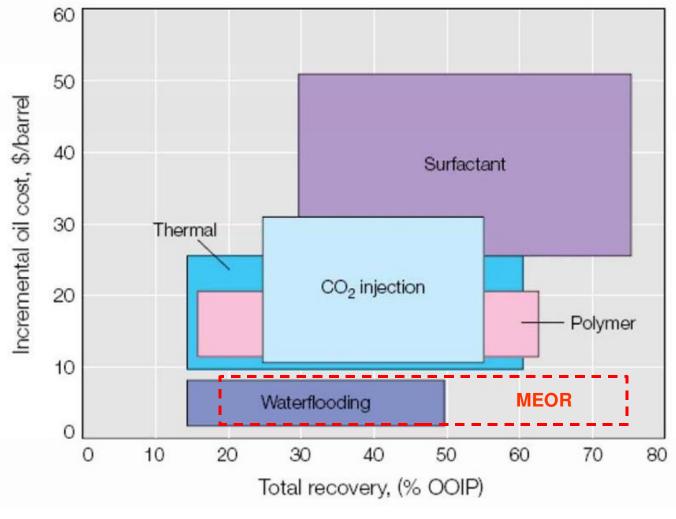

- 1. Stimulate beneficial indigenous microbial populations
 - A) sample production fluids
 - B) screen for indigenous microbial strains
 - C) periodically inject specially prepared nutrients and/or bio-catalysts
- 2. Inject and stimulate microbial strains isolated from production fluids
 - A) sample production fluids
 - B) isolate beneficial microbial strains and grow up high colony forming units (CFU's)
 - C) inject as one or more slugs
 - D) periodically inject specially prepared nutrients / bio-catalysts
- 3. Inject and stimulate a microbial system proven to improve oil production
 - A) use strains naturally selected for injectivity, transport and growth under reservoir conditions
 - B) inject as one or more high CFU slug(s)
 - C) periodically inject specially prepared nutrients / bio-catalysts
- 4. Inject biologically produced products and/or bio-catalysts (with or without microbial strains)
 - A) use commercially available MEOR products (enzymes, bio-catalysts, surfactants, etc.)

The history of Microbial EOR; its present and future role in enhanced oil recovery: http://www.rambiochemicals.com/docs/meor.html

- Plawowice Project Cooperative Partners
 - Design, Development, Implementation & Monitoring
 - → Results
 - → Summary
- MEOR Basic Approaches
- Maturity of Various EOR / MEOR Processes
- EOR / MEOR Cost per Incremental Barrel
- Summary

Maturity of Various EOR / MEOR Processes

EOR Process Development



Process development time

Primary and secondary recovery methods recover 30-40% of the oil in a reservoir. EOR / MEOR techniques target the remaining 60-70% left stranded in the ground.

- Plawowice Project Cooperative Partners
 - Design, Development, Implementation & Monitoring
 - → Results
 - → Summary
- MEOR Basic Approaches
- Maturity of Various EOR / MEOR Processes
- EOR / MEOR Cost per Incremental Barrel
- Summary

Costs Comparison and Potential of Various EOR Methods

Comparison of various EOR process costs. Ref: Simandoux *et al.* "Managing the Cost of Enhanced Oil Recovery." IFT Journal, vol 1.

- Plawowice Project Cooperative Partners
 - Design, Development, Implementation & Monitoring
 - → Results
 - → Summary
- MEOR Basic Approaches
- Maturity of Various EOR / MEOR Processes
- EOR / MEOR Cost per Incremental Barrel
- Conclusion

Conclusion

- Microbial Enhanced Oil Recovery [MEOR] technology can be applied successfully in smaller scale projects.
- Economies of scale predict that larger scale projects will return larger ROI's.
- MEOR can prolong the productive life of marginal oil fields.
- A systematic approach to project design, development, implementation and monitoring is essential for reducing risk and maximizing oil recovery.
- MEOR cost per barrel, even at small scale, is competitive with other EOR processes.

Mature oil fields world-wide with suitable geochemical and geophysical characteristics are viable candidates for

Microbial Enhanced Oil Recovery

Thank You for Attending

Praxis Interactive Technology Workshop 9th Global Edition

MEOR Spells MORE OIL

A Systematic Approach to Microbial Enhanced Waterflooding for Smaller Scale Projects.

Inquiries Welcome

Engineering Details Dr. Slawomir Falkowicz falkowicz@inig.pl Project Development Phillip Launt pdlaunt@rambiochemicals.com